
CPSC 316 Project 1: Palindromes   Page 1 of 2 

- CPSC 316 PROJECT 1 : PALINDROMES - 
 

A palindrome is any word, phrase or sentence that reads the same forward and backward. Here are some 

well-known palindromes: 

• Able was I, ere I saw Elba 

• A man, a plan, a canal, Panama 

• Desserts, I stressed 

• Kayak 

You will write two programs to determine if a string argument is a palindrome. The first will be an iterative 
solution that uses a queue and a stack, the second will be a recursive solution. For the purpose of this 
project we will ignore any non-alphanumeric characters (space, punctuation, non-printable characters). 

Files 

You are supplied with these files, which you are to use as-is: 

• makefile - use make on the linux system to compile the project using this makefile. The binary 
file will be named palindrome.out. 

• test_palindromes.cpp - This file contains all of the test cases and will be what you must 

compile and run to test your code. 
• PalindromeI.hpp - This contains the header file for an iterative Palindrome object that uses 

stacks and queues. You must implement this object in order for the test cases to pass. 
• PalindromeR.hpp - This contains the header file for a recursive Palindrome object. You must 

implement this object in order for the test cases to pass. 

You must write two different versions of the Palindrome.cpp file (PalindromeI.cpp and 
PalindromeR.cpp) that implement the test_string function found in the PalindromeI.hpp 

and PalindromeR.hpp files respectively. These will be the only two files you submit for grade so 
everything you implement must be contained within them. 

Version 1. Iterative Solution 

For the iterative version, simply add the characters of the string being tested to both a stack and a queue. 

Since each data structure removes items from the opposite ends, the proper characters are being tested 

at each step. 

Pseudocode for test_string 

• Create a stack and a queue to use. You may NOT use the standard library versions of linked list, 
stack or queue; you must write your own. However, you MAY alter the ones we have worked on 
together in class. 

o The stack MUST be implemented with linked lists. 



CPSC 316 Project 1: Palindromes   Page 2 of 2 

o The queue MUST be implemented using an array. 
• Add each alphanumeric character to both the stack and the queue. 
• When that’s done, pop a character from the stack and dequeue a character from the queue. 

o If the characters are not equal 
▪ Destroy the stack and queue appropriately. (This can be handled by the compiler 

if you wish, just make sure not to have memory leaks) 
▪ Return the number of correct matches before the mismatch occurred. 

o If they are equal, increment a counter for the correct number of matches. 
• When both the stack and queue are empty, return -1 to indicate it is a palindrome. 

Version 2. Recursive Solution 

For the recursive solution have test_string return -1 for a palindrome, 1 otherwise. Do not bother 

trying to count the number of matches. Implement the recursive test as follows: 

• Strings of length 1 or less are palindromes; and 

• For larger strings, if the first and last characters agree, strip these two characters from the string 
and test the remaining characters. 

Hints 

• A string may be indexed like an array to get individual characters. my_string[0] will give the first 
character of the string my_string. 

• If all the tests pass, you SHOULD be fairly close to 100% assuming you follow the implementation 
instructions, be sure to follow them all. 

Rubric 

• [30%] Your program must compile and run on our knuth linux server. We will go over how to test 
this in class. 

• [50%] Your program must pass all test cases 

• [10%] You must document all functions in your code (you don't need to go crazy, just document 
what you are doing) 

• [10%] You must properly handle memory, memory leaks will cost you points 

Submission Instructions 

When done, zip the two new files (PalindromeI.cpp and PalindromeR.cpp) into one archive and submit it 
to Brightspace. 

 

 

Last updated 2.24.2023 by T. O’Neil, based on a project by A. Deeter. Previous revision 9.7.2017. 


