
CPSC 316 Project 2: Huffman Code Trees Page 1 of 3

- CPSC 316 PROJECT 2 : HUFFMAN CODE TREES -

Text compression is an important text processing task in which a string defined over an alphabet (such as

the ASCII or Unicode character sets) is efficiently encoded into a small binary string. This is useful when

wanting to minimize the time to transmit text over a low-bandwidth channel or efficiently storing large

collections of documents.

One popular text compression method is the Huffman code, which uses a variable-length encoding

optimized for the specific string in question. The optimization uses character frequencies to save space by

using short code-words for commonly occurring characters and long code-words to encode low-frequency

characters. An example of a Huffman code is pictured below.

Input string: MISSISSIPPI

Character I M P S

Frequency 4 1 2 4

Encoding 0 100 101 11

Output string: 100011110111101011010

 0 1

I

 0 1

 S

 0 1
M P

As you can see Huffman’s algorithm is based on the construction of a binary tree representing the code.

Each external node is associated with a specific character, and the code word for that character is defined

by the sequence of bits associated with the nodes in the path from the root to the character. The code

created is a prefix code, in that no code word is a prefix for any other code word. This simplifies the

decoding of the output string to retrieve the original text.

You will write a program to create a Huffman coding tree based on an input string in order to encode that
string.

Files

You are supplied with these completed files:

• makefile - use make on the linux system to compile the project using this makefile. The binary
file will be named huffman.out.

• Huffman.hpp - This contains the header file for Huffman object as well as the Encoded
struct.

• Heap.hpp - This contains the header file for a min-heap class that stores HNode*.
• HNode.hpp – This is the struct for the nodes to be used inside the heap.

• test_huffman.cpp – There are no test cases for this program. Instead your program will
output the tree serialization (see below) and the encoded string. Based on your output you can
draw the tree and manually check that the encoded string matches.

You must complete the project by completing/writing the following:

• Huffman.cpp - There are three functions to be implemented in this file. The encode function
is already done, but you need to make Heap.cpp reflect all calls used within it.

CPSC 316 Project 2: Huffman Code Trees Page 2 of 3

• Heap.cpp – Your implementation of the min-heap class will be very similar to the examples we
did during the lectures, with appropriate changes to handle HNode objects. You must implement
the functions enqueue, dequeue, fix_up, fix_down and clear, and you must correctly
update the count variable.

• HNode.cpp – For leaf nodes, the value member is the character and the weight member
the frequency count. For internal nodes value is null and weight is the combined count of the
nodes in the subtrees. There are two constructors. One creates a leaf node, the other combines
two existing nodes to make an internal node. You must implement both.

General Information

• Make any changes to the .cpp files and not the header files.

• The heap is going to function as a priority queue without the overhead of creating a class
around the heap. You are NOT allowed to use std::priority_queue!

• When encoding, use "0" for a left branch and "1" for a right. In case of ties give precedence
to the character occurring first in the ASCII table.

• You ARE allowed to modify the heap code we did in class to implement your heap.
• You ARE allowed to use std::vector and std::map.

On Serializing Binary Trees

To represent a binary tree as a string, print the nodes in the order that they would appear in a preorder

traversal. Print the character (the value but not the weight) for each leaf and a “*” for internal nodes.

Represent a null pointer with a “/”. For example the serialized representation for our tree above would

be

*I//**M//P//S//

Rubric

• [20%] Your program must compile and run on the VMWare virtual Linux desktop

• [10%] Your Heap must work correctly with HNode pointers

• [20%] The Huffman tree must be correct

• [20%] The encoded string output must match the given string and Huffman tree

• [10%] You must document all functions in your code (within reason)

• [10%] You must properly handle memory, memory leaks will cost you points

Submission Instructions

When done, zip the eight relevant files (makefile, Huffman.hpp, Heap.hpp, HNode.hpp,
test_huffman.cpp and your newly-constructed Huffman.cpp, Heap.cpp and HNode.cpp)
into one archive and submit it to Brightspace.

Last updated 10.12.2017 by T. O’Neil, based on a project by A. Deeter.

CPSC 316 Project 2: Huffman Code Trees Page 3 of 3

TO-DO CHECKLIST

Finish HNode.cpp

 Creating a leaf node

 Creating an internal node

Write Heap.cpp

 Implement enqueue

 Implement dequeue

 Implement fix_up

 Implement fix_down

 Implement clear

Finish Huffman.cpp

 Implement create_codes

 Implement serialize_tree

 Implement encode_string

