
CPSC 316 Project 3: Not Quite MapQuest Page 1 of 2

- CPSC 316 PROJECT 3 : NOT QUITE MAPQUEST -

The purpose of this assignment is to use Dijkstra’s algorithm to implement the MapQuest©-like program

Not-Quite-Map-Quest© (NQMQ). You will be provided with a list of cities and the roads that connect them,

as well as the distances along these roads between pairs of cities. Your program will read a file containing

this information, accept starting and ending points, and display the path between the two named cities

having shortest distance.

Cities and connecting roads are represented as a

weighted graph with no multiple edges or loops. Input

regarding cities and roads is read directly from the file

nqmq.dat; do not read this file by redirecting standard

input. A sample data file can be downloaded from the

web page. A subset of a similar file appears at right. Note

the following:

3 /* number of cities */

Atlanta_GA /* city names */

Boston_MA

Chicago_IL

1 3 606 /* dist city1 to city3 */

2 3 860 /* dist city2 to city3 */

1. The distances (assumed to be in miles) appear only once; in other words the file gives the
distance from city1 to city2 but not from city2 to city1. Your program will have to account for
this by storing the data twice, once for the road as given and once for the reverse direction.

2. Two cities that are not connected by a road are assumed to be infinite distance apart. Use
whatever large integer constant you think adequate.

3. To get around problems with reading spaces while still having something resembling a nice

format, we use the underscore character for a space in city names.

After reading the data file and computing the path lengths,

prompt the user for two cities to travel between. I strongly

suggest simplifying the interface by numbering the cities on

the screen in menu form and accepting city numbers as

input. Remember that such a menu will change when the

nqmq.dat file changes. Output consists of the path

between the two cities and the distance associated with

that path. It’s probably simplest to just list the cities in the

order visited and then the distance. If done this way the

output screen could look like the one at right. Note that this

is only an example of how you could represent the output.

You may organize the screen in any manner you wish that

is clear.

Atlanta_GA to Boston_MA

Path:

Atlanta_GA

Chicago_IL

Boston_MA

Distance: 1466 miles

As discussed in discrete math, since this graph has no loops or multiple edges, it may be (and should be)

represented as an adjacency matrix. Further information can be found in most discrete math or data

structures texts. Finally there are a number of ways to search for paths. Our method of choice is Dijkstra’s

algorithm. Remember that, in addition to finding the length of the shortest path, you must be able to list

the cities along this path in order so that you can communicate this information to the user. The best

options appear to be either building and marking the path as you go, or marking the path and then

retracing it to print out at the end. Any way you can make this work is okay.

CPSC 316 Project 3: Not Quite MapQuest Page 2 of 2

Files

You are supplied with these completed files:

• makefile - use make on the linux system to compile the project using this makefile. The binary
file will be named digraph.out.

• Digraph.hpp - This contains the header file for a directed graph class using an adjacency
matrix.

• test_dijkstra.cpp – This file contains all of the test cases and will be what you must
compile and run to test your code.

• nqmq.dat and nqmqBig.dat – Data files with city names and road distances between cities.

You must complete the project by completing/writing the following:

• Digraph.cpp - There are seven functions to be implemented in this file.

General Information

• Make any changes to the .cpp files and not the header files.

• You ARE allowed to use std::vector and std::map. You are NOT allowed to use
std::priority_queue or other structures from the STL library.

Rubric

• [30%] Your program must compile and run on our knuth linux server

• [50%] Your program must pass all test cases

• [10%] You must document all functions in your code (within reason)

• [10%] You must properly handle memory, memory leaks will cost you points

Submission Instructions

When done, zip all relevant files (makefile, Digraph.hpp, nqmq.dat, test_dijkstra.cpp,
your newly-constructed Digraph.cpp plus any additional stack/list/heap classes you used) into one
archive and submit it to Brightspace.

Last updated 11.22.2017 by T. O’Neil.

